About: The novel coronavirus (COVID-19) pandemic continues to be a significant public health threat worldwide. As of mid-June 2020, COVID-19 has spread worldwide with more than 7.7 million confirmed cases and more than 400,000 deaths. The impacts are substantial particularly in developing and densely populated countries like Bangladesh with inadequate health care facilities, where COVID-19 cases are currently surging. While early detection and isolation were identified as important non-pharmaceutical intervention (NPI) measures for containing the disease spread, this may not be pragmatically implementable in developing countries primarily due to social and economic reasons (i.e. poor education, less public awareness, massive unemployment). To shed light on COVID-19 transmission dynamics and impacts of NPI scenarios, e.g. social distancing, this study conducted emerging pattern analysis using the space-time scan statistic at district and thana (i.e. a sub-district or 'upazila' with at least one police station) levels in Bangladesh and its capital Dhaka city, respectively. We found that the central and south eastern regions in Bangladesh are currently exhibiting a high risk of COVID-19 transmission. Dhaka megacity remains as the highest risk %22active%22 cluster since early April. The space-time progression of COVID-19 infection, when validated against the chronicle of government press releases and newspaper reports, suggests that Bangladesh have experienced a community level transmission at the early phase (i.e., March, 2020) primarily introduced by Bangladeshi citizens returning from coronavirus-affected countries in the Europe and the Middle East. A linkage is evident between the violation of NPIs and post-incubation period emergence of new clusters with elevated exposure risk around Bangladesh. This study provides novel insights into the space-time patterns of COVID-19 transmission dynamics and recommends pragmatic NPI implementation for reducing disease transmission and minimizing impacts in a resource-scarce country with Bangladesh as a case-study example.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The novel coronavirus (COVID-19) pandemic continues to be a significant public health threat worldwide. As of mid-June 2020, COVID-19 has spread worldwide with more than 7.7 million confirmed cases and more than 400,000 deaths. The impacts are substantial particularly in developing and densely populated countries like Bangladesh with inadequate health care facilities, where COVID-19 cases are currently surging. While early detection and isolation were identified as important non-pharmaceutical intervention (NPI) measures for containing the disease spread, this may not be pragmatically implementable in developing countries primarily due to social and economic reasons (i.e. poor education, less public awareness, massive unemployment). To shed light on COVID-19 transmission dynamics and impacts of NPI scenarios, e.g. social distancing, this study conducted emerging pattern analysis using the space-time scan statistic at district and thana (i.e. a sub-district or 'upazila' with at least one police station) levels in Bangladesh and its capital Dhaka city, respectively. We found that the central and south eastern regions in Bangladesh are currently exhibiting a high risk of COVID-19 transmission. Dhaka megacity remains as the highest risk %22active%22 cluster since early April. The space-time progression of COVID-19 infection, when validated against the chronicle of government press releases and newspaper reports, suggests that Bangladesh have experienced a community level transmission at the early phase (i.e., March, 2020) primarily introduced by Bangladeshi citizens returning from coronavirus-affected countries in the Europe and the Middle East. A linkage is evident between the violation of NPIs and post-incubation period emergence of new clusters with elevated exposure risk around Bangladesh. This study provides novel insights into the space-time patterns of COVID-19 transmission dynamics and recommends pragmatic NPI implementation for reducing disease transmission and minimizing impacts in a resource-scarce country with Bangladesh as a case-study example.
Subject
  • Primary care
  • Lists of countries
  • 2019 disasters in China
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software