AttributesValues
type
value
  • Aerosols represent a potential route of transmission of COVID-19. This study examined the effect of simulated sunlight, relative humidity, and suspension matrix on the stability of SARS-CoV-2 in aerosols. Both simulated sunlight and matrix significantly affected the decay rate of the virus. Relative humidity alone did not affect the decay rate; however, minor interactions between relative humidity and the other factors were observed. Decay rates in simulated saliva, under simulated sunlight levels representative of late winter/early fall and summer were 0.121±0.017 min(-1) (90% loss: 19 minutes) and 0.379±0.072 min(-1) (90% loss: 6 minutes), respectively. The mean decay rate without simulated sunlight across all relative humidity levels was 0.008±0.011 min(-1) (90% loss: 125 minutes). These results suggest that the potential for aerosol transmission of SARS-CoV-2 may be dependent on environmental conditions, particularly sunlight. These data may be useful to inform mitigation strategies to minimize the potential for aerosol transmission.
Subject
  • Virology
  • Exponentials
  • Physical chemistry
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software