AttributesValues
type
value
  • Dynamic fault trees (DFT) are widely adopted in industry to assess the dependability of safety-critical equipment. Since many systems are too large to be studied numerically, DFTs dependability is often analysed using Monte Carlo simulation. A bottleneck here is that many simulation samples are required in the case of rare events, e.g. in highly reliable systems where components fail seldomly. Rare event simulation (RES) provides techniques to reduce the number of samples in the case of rare events. We present a RES technique based on importance splitting, to study failures in highly reliable DFTs. Whereas RES usually requires meta-information from an expert, our method is fully automatic: By cleverly exploiting the fault tree structure we extract the so-called importance function. We handle DFTs with Markovian and non-Markovian failure and repair distributions—for which no numerical methods exist—and show the efficiency of our approach on several case studies.
Subject
  • Evaluation methods
  • Mathematical physics
  • Safety engineering
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software