AttributesValues
type
value
  • We present and evaluate new methods for incremental entity resolution as needed for the completion of knowledge graphs integrating data from multiple sources. Compared to previous approaches we aim at reducing the dependency on the order in which new sources and entities are added. For this purpose, we consider sets of new entities for an optimized assignment of them to entity clusters. We also propose the use of a light-weight approach to repair entity clusters in order to correct wrong clusters. The new approaches are integrated within the FAMER framework for parallel and scalable entity clustering. A detailed evaluation of the new approaches for real-world workloads shows their high effectiveness. In particular, the repair approach outperforms other incremental approaches and achieves the same quality than with batch-like entity resolution showing that its results are independent from the order in which new entities are added.
subject
  • Philosophical theories
  • Software quality
  • Philosophy of culture
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software