AttributesValues
type
value
  • Knowledge graph embedding models aim to represent entities and relations in continuous low-dimensional vector space, benefiting many research areas such as knowledge graph completion and web searching. However, previous works do not consider controlling information flow, which makes them hard to obtain useful latent information and limits model performance. Specifically, as human beings, predictions are usually made in multiple steps with every step filtering out irrelevant information and targeting at helpful information. In this paper, we first integrate iterative mechanism into knowledge graph embedding and propose a multi-step gated model which utilizes relations as queries to extract useful information from coarse to fine in multiple steps. First gate mechanism is adopted to control information flow by the interaction between entity and relation with multiple steps. Then we repeat the gate cell for several times to refine the information incrementally. Our model achieves state-of-the-art performance on most benchmark datasets compared to strong baselines. Further analyses demonstrate the effectiveness of our model and its scalability on large knowledge graphs.
Subject
  • Computer-related introductions in 1993
  • Knowledge representation
  • Mathematical concepts
  • Technical communication
  • Information science
  • Ontology (information science)
  • Semantic Web
  • Knowledge bases
  • Knowledge engineering
  • Ontology editors
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software