AttributesValues
type
value
  • In this paper, the authors develop a method of detecting correlations between epidemic patterns in different regions that are due to human movement and introduce a null model in which the travel-induced correlations are cancelled. They apply this method to the well-documented cases of seasonal influenza outbreaks in the United States and France. In the United States (using data for 1972-2002), the authors observed strong short-range correlations between several states and their immediate neighbors, as well as robust long-range spreading patterns resulting from large domestic air-traffic flows. The stability of these results over time allowed the authors to draw conclusions about the possible impact of travel restrictions on epidemic spread. The authors also applied this method to the case of France (1984-2004) and found that on the regional scale, there was no transportation mode that clearly dominated disease spread. The simplicity and robustness of this method suggest that it could be a useful tool for detecting transmission channels in the spread of epidemics.
subject
  • United States
  • G20 nations
  • G7 nations
  • Member states of the United Nations
  • Member states of NATO
  • Scientific modeling
  • Group of Eight nations
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software