AttributesValues
type
value
  • Recently, the explainability of Artificial Intelligence (AI) models and algorithms is becoming an important requirement in real-world applications. Indeed, although AI allows us to address and solve very difficult and complicated problems, AI-based tools act as a black box and, usually, do not explain how/why/when a specific decision has been taken. Among AI models, Fuzzy Rule-Based Systems (FRBSs) are recognized world-wide as transparent and interpretable tools: they can provide explanations in terms of linguistic rules. Moreover, FRBSs may achieve accuracy comparable to those achieved by less transparent models, such as neural networks and statistical models. In this work, we introduce SK-MOEFS (acronym of SciKit-Multi Objective Evolutionary Fuzzy System), a new Python library that allows the user to easily and quickly design FRBSs, employing Multi-Objective Evolutionary Algorithms. Indeed, a set of FRBSs, characterized by different trade-offs between their accuracy and their explainability, can be generated by SK-MOEFS. The user, then, will be able to select the most suitable model for his/her specific application.
Subject
  • Artificial intelligence
  • Programming languages
  • Types of words
  • Self-driving cars
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software