About: A full-length cDNA clone of the segment B of the very virulent infectious bursal disease virus (IBDV) strain BD 3/99 was constructed and the full-length nucleotide sequence was established. The nucleotide sequence encoding VP1, an RNA-dependent RNA polymerase, of BD 3/99 was aligned with that of 17 other IBDV strains including six very virulent, three classical virulent, five classical attenuated, one antigenic variant and two serotype 2 strains. The VP1 genes of all very virulent strains were 97.5% to 99.8% identical. With the exception of an atypical Australian strain, 002-73, all of the classical virulent or attenuated and antigenic variant strains were also 97.5% to 100% identical. Serotype 2 strains showed only 4–6% divergence from serotype 1 classical virulent or attenuated strains; in contrast, however, the very virulent strains were 10.5% to 12.5% divergent from the classical virulent or attenuated strains as well as serotype 2 strains. Analysis of the deduced amino acid sequence of VP1 revealed 17 common, including 8 unique amino acid substitutions in the very virulent strains. In the phylogenetic tree the very virulent strains formed a distinct cluster and all other strains including classical virulent, attenuated and antigenic variant strains and even serotype 2 strains were grouped together. It to is suggested that the VP1 of very virulent IBDV is phylogenetically distinct from that of all other IBDV strains and probably originated from a hitherto unidentified source.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • A full-length cDNA clone of the segment B of the very virulent infectious bursal disease virus (IBDV) strain BD 3/99 was constructed and the full-length nucleotide sequence was established. The nucleotide sequence encoding VP1, an RNA-dependent RNA polymerase, of BD 3/99 was aligned with that of 17 other IBDV strains including six very virulent, three classical virulent, five classical attenuated, one antigenic variant and two serotype 2 strains. The VP1 genes of all very virulent strains were 97.5% to 99.8% identical. With the exception of an atypical Australian strain, 002-73, all of the classical virulent or attenuated and antigenic variant strains were also 97.5% to 100% identical. Serotype 2 strains showed only 4–6% divergence from serotype 1 classical virulent or attenuated strains; in contrast, however, the very virulent strains were 10.5% to 12.5% divergent from the classical virulent or attenuated strains as well as serotype 2 strains. Analysis of the deduced amino acid sequence of VP1 revealed 17 common, including 8 unique amino acid substitutions in the very virulent strains. In the phylogenetic tree the very virulent strains formed a distinct cluster and all other strains including classical virulent, attenuated and antigenic variant strains and even serotype 2 strains were grouped together. It to is suggested that the VP1 of very virulent IBDV is phylogenetically distinct from that of all other IBDV strains and probably originated from a hitherto unidentified source.
Subject
  • Virology
  • Microbiology
  • Serology
  • Immune system
  • Viral proteins
  • Speciation
  • Biological classification
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software