AttributesValues
type
value
  • Abstract In this paper, the dynamical behaviors of an SEIR epidemic system governed by differential and algebraic equations with seasonal forcing in transmission rate are studied. The cases of only one varying parameter, two varying parameters and three varying parameters are considered to analyze the dynamical behaviors of the system. For the case of one varying parameter, the periodic, chaotic and hyperchaotic dynamical behaviors are investigated via the bifurcation diagrams, Lyapunov exponent spectrum diagram and Poincare section. For the cases of two and three varying parameters, a Lyapunov diagram is applied. A tracking controller is designed to eliminate the hyperchaotic dynamical behavior of the system, such that the disease gradually disappears. In particular, the stability and bifurcation of the system for the case which is the degree of seasonality β 1 = 0 are considered. Then taking isolation control, the aim of elimination of the disease can be reached. Finally, numerical simulations are given to illustrate the validity of the proposed results.
Subject
  • Epidemics
  • Epidemiology
  • Seasonality
  • Pandemics
  • Scientific modeling
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software