About: Autophagy is an important mechanism for organisms to eliminate viruses and other intracellular pathogens. Siniperca chuatsi rhabdovirus (SCRV) is an agent that has caused devastating losses in Chinese perch (Siniperca chuatsi) industry. But the role of autophagy in Siniperca chuatsi rhabdovirus (SCRV) infection is not clearly understood. In this study, we identified that SCRV infection triggered autophagy in CPB cells, which was demonstrated by the appearance of the membrane vesicles, GFP-LC3 punctuate pattern, conversion of LC3-I to LC3-II, and the co-localization of autophagosomes and lysosomes. The changes of autophagy flux in SCRV infection indicated that autophagy was inhibited at the early stage of SCRV infection, but was promoted at the late stage. UV-inactivated SCRV can induce autophagy, suggesting that SCRV replication is not essential for the induction of autophagy. Furthermore, we found inducing autophagy with Rapa inhibited SCRV proliferation, but inhibiting autophagy with 3-MA or CQ increased SCRV production in CPB cells. Then we assessed the effects of PI3K/Akt-mTOR signaling pathway on SCRV induced autophagy. We found that SCRV infection activated PI3K/AKT signaling pathway at 4 hpi, but inhibited it at 8 hpi. SCRV-N mRNA and protein level were decreased by inhibiting PI3K with LY294002, but increased by activating PI3K with 740Y–P. Those results indicated that SCRV infection induced autophagy via the PI3K/Akt-mTOR signal pathway, which will provide new insights into SCRV pathogenesis and antiviral treatment strategies.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Autophagy is an important mechanism for organisms to eliminate viruses and other intracellular pathogens. Siniperca chuatsi rhabdovirus (SCRV) is an agent that has caused devastating losses in Chinese perch (Siniperca chuatsi) industry. But the role of autophagy in Siniperca chuatsi rhabdovirus (SCRV) infection is not clearly understood. In this study, we identified that SCRV infection triggered autophagy in CPB cells, which was demonstrated by the appearance of the membrane vesicles, GFP-LC3 punctuate pattern, conversion of LC3-I to LC3-II, and the co-localization of autophagosomes and lysosomes. The changes of autophagy flux in SCRV infection indicated that autophagy was inhibited at the early stage of SCRV infection, but was promoted at the late stage. UV-inactivated SCRV can induce autophagy, suggesting that SCRV replication is not essential for the induction of autophagy. Furthermore, we found inducing autophagy with Rapa inhibited SCRV proliferation, but inhibiting autophagy with 3-MA or CQ increased SCRV production in CPB cells. Then we assessed the effects of PI3K/Akt-mTOR signaling pathway on SCRV induced autophagy. We found that SCRV infection activated PI3K/AKT signaling pathway at 4 hpi, but inhibited it at 8 hpi. SCRV-N mRNA and protein level were decreased by inhibiting PI3K with LY294002, but increased by activating PI3K with 740Y–P. Those results indicated that SCRV infection induced autophagy via the PI3K/Akt-mTOR signal pathway, which will provide new insights into SCRV pathogenesis and antiviral treatment strategies.
Subject
  • Virology
  • Immunology
  • Cell death
  • Cell imaging
  • Programmed cell death
  • Cellular processes
  • Membrane biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software