AttributesValues
type
value
  • The traditional Siamese network-based target tracking algorithm needs to use the convolution feature of the target to scan around the target location when predicting the location of the target in the next frame image, and perform similarity calculation to obtain the similarity score matrix with the highest score. It is the next frame target position. The highest similarity score often does not represent the precise target position of the target, which is often affected by the sliding step size during scanning. Aiming at this problem, this paper proposes a target tracking method based on density clustering. By combining the Siamese network to predict the next frame target position, and adding the target’s motion trajectory information, the direction of the target motion is given more weight, the other directions are given a smaller weight, and finally the target position is predicted by the density clustering method. The results show that the proposed algorithm effectively improves the accuracy of the target location prediction of the Siamese network when tracking targets.
Subject
  • Algorithms
  • Image processing
  • Model selection
  • Networks
  • Functional analysis
  • Machine learning
  • Graph theory
  • Fourier analysis
  • Network theory
  • Feature detection (computer vision)
  • Optimization algorithms and methods
  • Mathematical logic
  • Theoretical computer science
  • Bilinear operators
  • Binary operations
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software