About: The emergence of the novel coronavirus SARS-CoV-2 has led to a pandemic infecting more than two million people worldwide in less than four months, posing a major threat to healthcare systems. This is compounded by the shortage of available tests causing numerous healthcare workers to unnecessarily self-isolate. We provide a roadmap instructing how a research institute can be repurposed in the midst of this crisis, in collaboration with partner hospitals and an established diagnostic laboratory, harnessing existing expertise in virus handling, robotics, PCR, and data science to derive a rapid, high throughput diagnostic testing pipeline for detecting SARS-CoV-2 in patients with suspected COVID-19. The pipeline is used to detect SARS-CoV-2 from combined nose-throat swabs and endotracheal secretions/ bronchoalveolar lavage fluid. Notably, it relies on a series of in-house buffers for virus inactivation and the extraction of viral RNA, thereby reducing the dependency on commercial suppliers at times of global shortage. We use a commercial RT-PCR assay, from BGI, and results are reported with a bespoke online web application that integrates with the healthcare digital system. This strategy facilitates the remote reporting of thousands of samples a day with a turnaround time of under 24 hours, universally applicable to laboratories worldwide.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The emergence of the novel coronavirus SARS-CoV-2 has led to a pandemic infecting more than two million people worldwide in less than four months, posing a major threat to healthcare systems. This is compounded by the shortage of available tests causing numerous healthcare workers to unnecessarily self-isolate. We provide a roadmap instructing how a research institute can be repurposed in the midst of this crisis, in collaboration with partner hospitals and an established diagnostic laboratory, harnessing existing expertise in virus handling, robotics, PCR, and data science to derive a rapid, high throughput diagnostic testing pipeline for detecting SARS-CoV-2 in patients with suspected COVID-19. The pipeline is used to detect SARS-CoV-2 from combined nose-throat swabs and endotracheal secretions/ bronchoalveolar lavage fluid. Notably, it relies on a series of in-house buffers for virus inactivation and the extraction of viral RNA, thereby reducing the dependency on commercial suppliers at times of global shortage. We use a commercial RT-PCR assay, from BGI, and results are reported with a bespoke online web application that integrates with the healthcare digital system. This strategy facilitates the remote reporting of thousands of samples a day with a turnaround time of under 24 hours, universally applicable to laboratories worldwide.
Subject
  • Virology
  • Zoonoses
  • COVID-19
  • Economic globalization
  • Software architecture
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software