About: The rapid outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China followed by its spread around the world poses a serious global concern for public health. To this date, no specific drugs or vaccines are available to treat SARS-CoV-2 despite its close relation to the SARS-CoV virus that caused a similar epidemic in 2003. Thus, there remains an urgent need for the identification and development of specific antiviral therapeutics against SARS-CoV-2. To conquer viral infections, the inhibition of proteases essential for proteolytic processing of viral polyproteins is a conventional therapeutic strategy. In order to find novel inhibitors, we computationally screened a compound library of over 606 million compounds for binding at the recently solved crystal structure of the main protease (M(pro)) of SARS-CoV-2. A screening of such a vast chemical space for SARS-CoV-2 M(pro) inhibitors has not been reported before. After shape screening, two docking protocols were applied followed by the determination of molecular descriptors relevant for pharmacokinetics to narrow down the number of initial hits. Next, molecular dynamics simulations were conducted to validate the stability of docked binding modes and comprehensively quantify ligand binding energies. After evaluation of potential off-target binding, we report a list of 12 purchasable compounds, with binding affinity to the target protease that is predicted to be more favorable than that of the cocrystallized peptidomimetic compound. In order to quickly advise ongoing therapeutic intervention for patients, we evaluated approved antiviral drugs and other protease inhibitors to provide a list of nine compounds for drug repurposing. Furthermore, we identified the natural compounds (−)-taxifolin and rhamnetin as potential inhibitors of M(pro). Rhamnetin is already commercially available in pharmacies.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The rapid outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China followed by its spread around the world poses a serious global concern for public health. To this date, no specific drugs or vaccines are available to treat SARS-CoV-2 despite its close relation to the SARS-CoV virus that caused a similar epidemic in 2003. Thus, there remains an urgent need for the identification and development of specific antiviral therapeutics against SARS-CoV-2. To conquer viral infections, the inhibition of proteases essential for proteolytic processing of viral polyproteins is a conventional therapeutic strategy. In order to find novel inhibitors, we computationally screened a compound library of over 606 million compounds for binding at the recently solved crystal structure of the main protease (M(pro)) of SARS-CoV-2. A screening of such a vast chemical space for SARS-CoV-2 M(pro) inhibitors has not been reported before. After shape screening, two docking protocols were applied followed by the determination of molecular descriptors relevant for pharmacokinetics to narrow down the number of initial hits. Next, molecular dynamics simulations were conducted to validate the stability of docked binding modes and comprehensively quantify ligand binding energies. After evaluation of potential off-target binding, we report a list of 12 purchasable compounds, with binding affinity to the target protease that is predicted to be more favorable than that of the cocrystallized peptidomimetic compound. In order to quickly advise ongoing therapeutic intervention for patients, we evaluated approved antiviral drugs and other protease inhibitors to provide a list of nine compounds for drug repurposing. Furthermore, we identified the natural compounds (−)-taxifolin and rhamnetin as potential inhibitors of M(pro). Rhamnetin is already commercially available in pharmacies.
Subject
  • Virology
  • Pharmacy
  • Flavanonols
  • Sarbecovirus
  • Chiroptera-borne diseases
  • Infraspecific virus taxa
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software