About: BACKGROUND: The mortality rate of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) patients is a major challenge in all healthcare systems worldwide. Because the MERS-CoV risk-standardized mortality rates are currently unavailable in the literature, the author concentrated on developing a method to estimate the risk-standardized mortality rates using MERS-CoV 3- and 30-day mortality measures. METHODS: MERS-CoV data in Saudi Arabia is publicly reported and made available through the Saudi Ministry of Health (SMOH) website. The author studied 660 MERS-CoV patients who were reported by the SMOH between December 2, 2014 and November 12, 2016. The data gathered contained basic demographic information (age, gender, and nationality), healthcare worker, source of infection, pre-existing illness, symptomatic, severity of illness, and regions in Saudi Arabia. The status and date of mortality were also reported. Cox-proportional hazard (CPH) models were applied to estimate the hazard ratios for the predictors of 3- and 30-day mortality. RESULTS: 3-day, 30-day, and overall mortality were found to be 13.8%, 28.3%, and 29.8%, respectively. According to CPH, multivariate predictors of 3-day mortality were elderly, non-healthcare workers, illness severity, and hospital-acquired infections (adjusted hazard ratio (aHR) =1.7; 8.8; 6.5; and 2.8, respectively). Multivariate predictors of 30-day mortality were elderly, non-healthcare workers, pre-existing illness, severity of illness, and hospital-acquired infections (aHR =1.7; 19.2; 2.1; 3.7; and 2.9, respectively). CONCLUSIONS: Several factors were identified that could influence mortality outcomes at 3 days and 30 days, including age (elderly), non-healthcare workers, severity of illness, and hospital-acquired infections. The findings can serve as a guide for healthcare practitioners by appropriately identifying and managing potential patients at high risk of death.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • BACKGROUND: The mortality rate of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) patients is a major challenge in all healthcare systems worldwide. Because the MERS-CoV risk-standardized mortality rates are currently unavailable in the literature, the author concentrated on developing a method to estimate the risk-standardized mortality rates using MERS-CoV 3- and 30-day mortality measures. METHODS: MERS-CoV data in Saudi Arabia is publicly reported and made available through the Saudi Ministry of Health (SMOH) website. The author studied 660 MERS-CoV patients who were reported by the SMOH between December 2, 2014 and November 12, 2016. The data gathered contained basic demographic information (age, gender, and nationality), healthcare worker, source of infection, pre-existing illness, symptomatic, severity of illness, and regions in Saudi Arabia. The status and date of mortality were also reported. Cox-proportional hazard (CPH) models were applied to estimate the hazard ratios for the predictors of 3- and 30-day mortality. RESULTS: 3-day, 30-day, and overall mortality were found to be 13.8%, 28.3%, and 29.8%, respectively. According to CPH, multivariate predictors of 3-day mortality were elderly, non-healthcare workers, illness severity, and hospital-acquired infections (adjusted hazard ratio (aHR) =1.7; 8.8; 6.5; and 2.8, respectively). Multivariate predictors of 30-day mortality were elderly, non-healthcare workers, pre-existing illness, severity of illness, and hospital-acquired infections (aHR =1.7; 19.2; 2.1; 3.7; and 2.9, respectively). CONCLUSIONS: Several factors were identified that could influence mortality outcomes at 3 days and 30 days, including age (elderly), non-healthcare workers, severity of illness, and hospital-acquired infections. The findings can serve as a guide for healthcare practitioners by appropriately identifying and managing potential patients at high risk of death.
subject
  • Arabian Peninsula
  • Primary care
  • Human geography
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software