About: Face detection perceives great importance in surveillance paradigm and security paradigm areas. Face recognition is the technique to identify a person identity after face detection. Extensive research has been done on these topics. Another important research problem is to detect concealed faces, especially in high-security places like airports or crowded places like concerts and shopping centres, for they may prevail security threat. Also, in order to help effectively in preventing the spread of Coronavirus, people should wear masks during the pandemic especially in the entrance to hospitals and medical facilities. Surveillance systems in medical facilities should issue warnings against unmasked people. This paper presents a novel technique for concealed face detection based on complexion detection to challenge a concealed face assumption. The proposed algorithm first determine of the existence of a human being in the surveillance scene. Head and shoulder contour will be detected. The face will be clustered to cluster patches. Then determination of presence or absent of human skin will be determined. We proposed a hybrid approach that combines normalized RGB (rgb) and the YCbCr space color. This technique is tested on two datasets; the first one contains 650 images of skin patches. The second dataset contains 800 face images. The algorithm achieves an average detection rate of 97.51% for concealed faces. Also, it achieved a run time comparable with existing state-of-the-art concealed face detection systems that run in real time.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Face detection perceives great importance in surveillance paradigm and security paradigm areas. Face recognition is the technique to identify a person identity after face detection. Extensive research has been done on these topics. Another important research problem is to detect concealed faces, especially in high-security places like airports or crowded places like concerts and shopping centres, for they may prevail security threat. Also, in order to help effectively in preventing the spread of Coronavirus, people should wear masks during the pandemic especially in the entrance to hospitals and medical facilities. Surveillance systems in medical facilities should issue warnings against unmasked people. This paper presents a novel technique for concealed face detection based on complexion detection to challenge a concealed face assumption. The proposed algorithm first determine of the existence of a human being in the surveillance scene. Head and shoulder contour will be detected. The face will be clustered to cluster patches. Then determination of presence or absent of human skin will be determined. We proposed a hybrid approach that combines normalized RGB (rgb) and the YCbCr space color. This technique is tested on two datasets; the first one contains 650 images of skin patches. The second dataset contains 800 face images. The algorithm achieves an average detection rate of 97.51% for concealed faces. Also, it achieved a run time comparable with existing state-of-the-art concealed face detection systems that run in real time.
Subject
  • Patent law
  • Automatic identification and data capture
  • Color space
  • Object recognition and categorization
  • Face recognition
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software