AttributesValues
type
value
  • In this paper, a method is proposed to measure human respiratory volume using a depth camera. The level-set segmentation method, combined with spatial and temporal information, was used to measure respiratory volume accurately. The shape of the human chest wall was used as spatial information. As temporal information, the segmentation result from the previous frame in the time-aligned depth image was used. The results of the proposed method were verified using a ventilator. The proposed method was also compared with other level-set methods. The result showed that the mean tidal volume error of the proposed method was 8.41% compared to the actual tidal volume. This was calculated to have less error than with two other methods: the level-set method with spatial information (14.34%) and the level-set method with temporal information (10.93%). The difference between these methods of tidal volume error was statistically significant [Formula: see text]. The intra-class correlation coefficient (ICC) of the respiratory volume waveform measured by a ventilator and by the proposed method was 0.893 on an average, while the ICC between the ventilator and the other methods were 0.837 and 0.879 on an average.
Subject
  • Pulmonary function testing
  • Respiration
  • Image processing
  • Computational fluid dynamics
  • Optimization algorithms and methods
  • Respiratory therapy
  • Respiratory physiology
  • Medical pumps
  • Computer graphics algorithms
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software