About: BACKGROUND: Positive end-expiratory pressure (PEEP) is used to optimize oxygenation by preventing alveolar collapse. However, PEEP can potentially decrease cardiac output through cardiopulmonary interactions. The effect of PEEP on cardiac output during cardiopulmonary resuscitation (CPR) is not known. METHODS: This was a preclinical randomized, controlled, animal study conducted in an animal research facility on 25 Landrace-Yorkshire pigs. After inducing cardiac arrest, CPR was performed with LUCAS 3. During CPR, pigs were ventilated at a PEEP of 0, 5, 10, 15, 20 cmH(2)O (randomly determined via lottery) for 9 min. Cardiac output, obtained via ultrasound dilution, and PaO(2) were measured, and oxygen delivery calculated for each PEEP. RESULTS: A mixed-effects repeated-measures analysis of variance was used to compare the baseline value adjusted mean cardiac output, PaO(2), and oxygen delivery between PEEP groups. Least significant difference test was used to conduct pairwise comparisons between PEEP groups. To determine optimum PEEP, Gaussian mixture model was applied to the adjusted means of cardiac output and oxygen delivery. Increasing PEEP to 10 and higher resulted in significant declines in cardiac output. A PEEP of 15 and higher resulted in significant declines in oxygen delivery. As PEEP was increased from 0 to 20, PaO(2) increased significantly. Gaussian mixture model identified the 0–5 PEEP group as providing optimal cardiac output and oxygen delivery, with PEEP of 5 providing the highest oxygen delivery. CONCLUSIONS: A PEEP of 0–5 resulted in the optimal oxygen delivery and cardiac output during CPR, with PEEP of 5 resulting in higher oxygen delivery, and a slightly lower, statistically insignificant cardiac output than PEEP of 0.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • BACKGROUND: Positive end-expiratory pressure (PEEP) is used to optimize oxygenation by preventing alveolar collapse. However, PEEP can potentially decrease cardiac output through cardiopulmonary interactions. The effect of PEEP on cardiac output during cardiopulmonary resuscitation (CPR) is not known. METHODS: This was a preclinical randomized, controlled, animal study conducted in an animal research facility on 25 Landrace-Yorkshire pigs. After inducing cardiac arrest, CPR was performed with LUCAS 3. During CPR, pigs were ventilated at a PEEP of 0, 5, 10, 15, 20 cmH(2)O (randomly determined via lottery) for 9 min. Cardiac output, obtained via ultrasound dilution, and PaO(2) were measured, and oxygen delivery calculated for each PEEP. RESULTS: A mixed-effects repeated-measures analysis of variance was used to compare the baseline value adjusted mean cardiac output, PaO(2), and oxygen delivery between PEEP groups. Least significant difference test was used to conduct pairwise comparisons between PEEP groups. To determine optimum PEEP, Gaussian mixture model was applied to the adjusted means of cardiac output and oxygen delivery. Increasing PEEP to 10 and higher resulted in significant declines in cardiac output. A PEEP of 15 and higher resulted in significant declines in oxygen delivery. As PEEP was increased from 0 to 20, PaO(2) increased significantly. Gaussian mixture model identified the 0–5 PEEP group as providing optimal cardiac output and oxygen delivery, with PEEP of 5 providing the highest oxygen delivery. CONCLUSIONS: A PEEP of 0–5 resulted in the optimal oxygen delivery and cardiac output during CPR, with PEEP of 5 resulting in higher oxygen delivery, and a slightly lower, statistically insignificant cardiac output than PEEP of 0.
Subject
  • Hematology
  • Mechanical ventilation
  • Intensive care medicine
  • Cardiovascular physiology
  • Causes of death
  • Respiratory therapy
  • Respiratory system procedures
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software