About: Background: Many countries have implemented population-wide interventions such as physical distancing measures, in efforts to control COVID-19. The extent and success of such measures has varied. Many jurisdictions with declines in reported COVID-19 cases are moving to relax measures, while others are continuing to intensify efforts to reduce transmission. Aim: We aim to determine the time frame between a change in COVID-19 measures at the population level and the observable impact of such a change on cases. Methods: We examine how long it takes for there to be a substantial difference between the cases that occur following a change in control measures and those that would have occurred at baseline. We then examine how long it takes to detect a difference, given delays and noise in reported cases. We use changes in population-level (e.g., distancing) control measures informed by data and estimates from British Columbia, Canada. Results: We find that the time frames are long: it takes three weeks or more before we might expect a substantial difference in cases given a change in population-level COVID-19 control, and it takes slightly longer to detect the impacts of the change. The time frames are shorter (11-15 days) for dramatic changes in control, and they are impacted by noise and delays in the testing and reporting process, with delays reaching up to 25-40 days. Conclusion: The time until a change in broad control measures has an observed impact is longer than is typically understood, and is longer than the mean incubation period (time between exposure than onset) and the often used 14 day time period. Policy makers and public health planners should consider this when assessing the impact of policy change, and efforts should be made to develop rapid, consistent real-time COVID-19 surveillance.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Background: Many countries have implemented population-wide interventions such as physical distancing measures, in efforts to control COVID-19. The extent and success of such measures has varied. Many jurisdictions with declines in reported COVID-19 cases are moving to relax measures, while others are continuing to intensify efforts to reduce transmission. Aim: We aim to determine the time frame between a change in COVID-19 measures at the population level and the observable impact of such a change on cases. Methods: We examine how long it takes for there to be a substantial difference between the cases that occur following a change in control measures and those that would have occurred at baseline. We then examine how long it takes to detect a difference, given delays and noise in reported cases. We use changes in population-level (e.g., distancing) control measures informed by data and estimates from British Columbia, Canada. Results: We find that the time frames are long: it takes three weeks or more before we might expect a substantial difference in cases given a change in population-level COVID-19 control, and it takes slightly longer to detect the impacts of the change. The time frames are shorter (11-15 days) for dramatic changes in control, and they are impacted by noise and delays in the testing and reporting process, with delays reaching up to 25-40 days. Conclusion: The time until a change in broad control measures has an observed impact is longer than is typically understood, and is longer than the mean incubation period (time between exposure than onset) and the often used 14 day time period. Policy makers and public health planners should consider this when assessing the impact of policy change, and efforts should be made to develop rapid, consistent real-time COVID-19 surveillance.
Subject
  • Zoonoses
  • Viral respiratory tract infections
  • COVID-19
  • Evaluation methods
  • Occupational safety and health
  • Concepts in the philosophy of mind
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software