AttributesValues
type
value
  • Long-term news article archives are valuable resources about our past, allowing people to know detailed information of events that occurred at specific time points. To make better use of such heritage collections, this work considers the task of large scale question answering on long-term news article archives. Questions on such archives are often event-related. In addition, they usually exhibit strong temporal aspects and can be roughly categorized into two types: (1) ones containing explicit temporal expressions, and (2) ones only implicitly associated with particular time periods. We focus on the latter type as such questions are more difficult to be answered, and we propose a retriever-reader model with an additional module for reranking articles by exploiting temporal information from different angles. Experimental results on carefully constructed test set show that our model outperforms the existing question answering systems, thanks to an additional module that finds more relevant documents.
subject
  • Deep learning
  • Concepts in metaphysics
  • Information retrieval genres
  • Natural language processing
  • Artificial intelligence applications
  • Computational linguistics
  • Timekeeping
  • Tasks of natural language processing
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software