About: Miniaturized integrated DNA analysis systems offer the potential to provide unprecedented advances in cost and speed relative to current benchtop-scale instrumentation by allowing rapid bioanalysis assays to be performed in a portable self contained device format that can be inexpensively mass-produced. The polymerase chain reaction (PCR) has been a natural focus of many of these miniaturization efforts, owing to its capability to efficiently replicate target regions of interest from small quantities template DNA. Scale-down of PCR has proven to be particularly challenging, however, due to an unfavorable combination of relatively severe temperature extremes (resulting in the need to repeatedly heat minute aqueous sample volumes to temperatures in the vicinity of 95°C with minimal evaporation) and high surface area to volume conditions imposed by nanoliter reactor geometries (often leading to inhibition of the reaction by nonspecific adsorption of reagents at the reactor walls). Despite these daunting challenges, considerable progress has been made in the development of microfluidic devices capable of performing increasingly sophisticated PCR-based bioassays. This chapter reviews the progress that has been made to date and assesses the outlook for future advances.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Miniaturized integrated DNA analysis systems offer the potential to provide unprecedented advances in cost and speed relative to current benchtop-scale instrumentation by allowing rapid bioanalysis assays to be performed in a portable self contained device format that can be inexpensively mass-produced. The polymerase chain reaction (PCR) has been a natural focus of many of these miniaturization efforts, owing to its capability to efficiently replicate target regions of interest from small quantities template DNA. Scale-down of PCR has proven to be particularly challenging, however, due to an unfavorable combination of relatively severe temperature extremes (resulting in the need to repeatedly heat minute aqueous sample volumes to temperatures in the vicinity of 95°C with minimal evaporation) and high surface area to volume conditions imposed by nanoliter reactor geometries (often leading to inhibition of the reaction by nonspecific adsorption of reagents at the reactor walls). Despite these daunting challenges, considerable progress has been made in the development of microfluidic devices capable of performing increasingly sophisticated PCR-based bioassays. This chapter reviews the progress that has been made to date and assesses the outlook for future advances.
subject
  • Biotechnology
  • Titration
  • Cooking weights and measures
  • Gas technologies
  • Laboratory techniques
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software