AttributesValues
type
value
  • Model‐informed drug development (MIDD) approaches have rapidly advanced in drug development in recent years. Additionally, the Prescription Drug User Fee Act (PDUFA) VI has specific commitments to further enhance MIDD. Tumor growth dynamic (TGD) modeling, as one of the commonly utilized MIDD approaches in oncology, fulfills the purposes to accelerate the drug development, to support new drug and biologics license applications, and to guide the market access. Increasing knowledge of TGD modeling methodologies, encouraging applications in clinical setting for patients’ survival, and complementing assessment of regulatory review for submissions, together fueled promising potentials for imminent enhancement of TGD in oncology. This review is to comprehensively summarize the history of TGD, and present case examples of the recent advance of TGD modeling (mixture model and joint model), as well as the TGD impact on regulatory decisions, thus illustrating challenges and opportunities. Additionally, this review presents the future perspectives for TGD approach.
subject
  • Machine learning
  • Drug discovery
  • Pharmacy
  • Life sciences industry
  • Pharmaceutical industry
  • Probabilistic models
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software