About: Cellular biology occurs through myriad interactions between diverse molecular components, many of which assemble in to specific complexes. Various techniques can provide a qualitative survey of which components are found in a given complex. However, quantitative analysis of the absolute number of molecules within a complex (known as stoichiometry) remains challenging. Here we provide a novel method that combines fluorescence microscopy and statistical modelling to derive accurate molecular counts. We have devised a system in which a given biomolecule is differentially labelled with spectrally distinct fluorescent dyes (label A or B), which are then mixed such that B-labelled molecules are vastly outnumbered by those with label A. Complexes, containing this component, are then simply scored as either being positive or negative for label B. The frequency of positive complexes is directly related to the stoichiometry of interaction and molecular counts can be inferred by statistical modelling. We demonstrate this method using complexes of Adenovirus particles and monoclonal antibodies, achieving counts that are in excellent agreement with previous estimates. Beyond virology, this approach is readily transferable to other experimental systems and, therefore, provides a powerful tool for quantitative molecular biology. The statistical models used in our analysis are available here: https://github.com/sophiamersmann/molecular-counting, the raw data used for molecular counting can be found here: 10.5281/zenodo.3955142.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Cellular biology occurs through myriad interactions between diverse molecular components, many of which assemble in to specific complexes. Various techniques can provide a qualitative survey of which components are found in a given complex. However, quantitative analysis of the absolute number of molecules within a complex (known as stoichiometry) remains challenging. Here we provide a novel method that combines fluorescence microscopy and statistical modelling to derive accurate molecular counts. We have devised a system in which a given biomolecule is differentially labelled with spectrally distinct fluorescent dyes (label A or B), which are then mixed such that B-labelled molecules are vastly outnumbered by those with label A. Complexes, containing this component, are then simply scored as either being positive or negative for label B. The frequency of positive complexes is directly related to the stoichiometry of interaction and molecular counts can be inferred by statistical modelling. We demonstrate this method using complexes of Adenovirus particles and monoclonal antibodies, achieving counts that are in excellent agreement with previous estimates. Beyond virology, this approach is readily transferable to other experimental systems and, therefore, provides a powerful tool for quantitative molecular biology. The statistical models used in our analysis are available here: https://github.com/sophiamersmann/molecular-counting, the raw data used for molecular counting can be found here: 10.5281/zenodo.3955142.
subject
  • Virology
  • Cell imaging
  • Laboratory equipment
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software