AttributesValues
type
value
  • In this paper, we propose a real-time robot-based auxiliary system for risk evaluation of COVID-19 infection. It combines real-time speech recognition, temperature measurement, keyword detection, cough detection and other functions in order to convert live audio into actionable structured data to achieve the COVID-19 infection risk assessment function. In order to better evaluate the COVID-19 infection, we propose an end-to-end method for cough detection and classification for our proposed system. It is based on real conversation data from human-robot, which processes speech signals to detect cough and classifies it if detected. The structure of our model are maintained concise to be implemented for real-time applications. And we further embed this entire auxiliary diagnostic system in the robot and it is placed in the communities, hospitals and supermarkets to support COVID-19 testing. The system can be further leveraged within a business rules engine, thus serving as a foundation for real-time supervision and assistance applications. Our model utilizes a pretrained, robust training environment that allows for efficient creation and customization of customer-specific health states.
Subject
  • COVID-19
  • Real-time technology
  • Safety engineering
  • Automatic identification and data capture
  • History of human–computer interaction
  • Real-time computing
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software