About: In this paper authors propose a new algorithm for linguistic data summarization based on hybridization of rough sets and fuzzy sets techniques. The new algorithm applies rough sets theory for feature selection in early stages of linguistic summaries’ generation. The rough sets theory was used to reduce on significant way, the amount on summaries obtained by others algorithms. The algorithm combines lower approximation, k grade dependency and fuzzy sets to get linguistic summaries. The results of proposed algorithm are compared with association rules approach. In order to validate the algorithm proposed, authors apply both qualitative and quantitative methods. Authors used two databases in order to validate the algorithm; theses databases belong to “Repository of Project Management Research”. The first database is associated to personality traits and human performance in software projects. The second database is associated to analysis of revenue assurance in different organization. Considering quantitative approach, the algorithm proposed, obtains better results than the algorithm based on association rules; while regards execution time, the best algorithm was the algorithm based on association rules, because rough sets theory was high time-consuming technique.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • In this paper authors propose a new algorithm for linguistic data summarization based on hybridization of rough sets and fuzzy sets techniques. The new algorithm applies rough sets theory for feature selection in early stages of linguistic summaries’ generation. The rough sets theory was used to reduce on significant way, the amount on summaries obtained by others algorithms. The algorithm combines lower approximation, k grade dependency and fuzzy sets to get linguistic summaries. The results of proposed algorithm are compared with association rules approach. In order to validate the algorithm proposed, authors apply both qualitative and quantitative methods. Authors used two databases in order to validate the algorithm; theses databases belong to “Repository of Project Management Research”. The first database is associated to personality traits and human performance in software projects. The second database is associated to analysis of revenue assurance in different organization. Considering quantitative approach, the algorithm proposed, obtains better results than the algorithm based on association rules; while regards execution time, the best algorithm was the algorithm based on association rules, because rough sets theory was high time-consuming technique.
Subject
  • Algorithms
  • Quantitative research
  • American films
  • Mathematical logic
  • Theoretical computer science
  • Systems of set theory
  • Films set in universities and colleges
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software