AttributesValues
type
value
  • With quantum computers still under heavy development, already numerous quantum machine learning algorithms have been proposed for both gate-based quantum computers and quantum annealers. Recently, a quantum annealing version of a reinforcement learning algorithm for grid-traversal using one agent was published. We extend this work based on quantum Boltzmann machines, by allowing for any number of agents. We show that the use of quantum annealing can improve the learning compared to classical methods. We do this both by means of actual quantum hardware and by simulated quantum annealing.
Subject
  • Emerging technologies
  • Models of computation
  • Optimization algorithms and methods
  • Theoretical computer science
  • Australian inventions
  • Quantum information science
  • Quantum computing
  • Stochastic optimization
  • Quantum algorithms
  • Quantum programming
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software