AttributesValues
type
value
  • Depletion of phagocytes that infiltrate host organs like the lungs reduces inflammatory damage to tissues. Understanding the mechanisms by which this process occurs could lead to new therapeutic approaches to limit the detrimental effects of inflammation. The lungs, gastrointestinal tract, and skin are particularly prone to infection. Specialized immune cells protect these organs from tissue damage by eliminating phagocytes from inflamed tissues by recognizing signals produced by the phagocytes. One such signal is heat shock proteins (HSP) expressed on the cell surface of phagocytes. These HSP closely resemble their microbial equivalents, and therefore phagocytes that are labeled by HSP are recognized as target cells. T lymphocytes bearing γδT cell receptor (TCR) elicit fast responses to invading pathogens. Since the γδTCR has limited germline-encoded diversity, HSP are an ideal target for recognition by these cells. γδT cells exert cytotoxic actions towards macrophages and neutrophils that express Hsp60 or Hsp70, respectively, on their cell surface. Through the recognition of HSP on the cell surface of inflamed cells, γδT cells eliminate phagocytes from inflammatory sites, thereby preventing host tissue damage
Subject
  • Therapy
  • Immune system
  • Leukocytes
  • Heat shock proteins
  • Phagocytes
  • Membrane biology
  • 1670s in science
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software