About: Abstract Deaths from the COVID-19 pandemic have disproportionately affected older adults and residents in nursing homes. Although emerging research has identified place-based risk factors for the general population, little research has been conducted for nursing home populations. This GIS-based spatial modeling study aimed to determine the association between nursing home-level metrics and county-level, place-based variables with COVID-19 confirmed cases in nursing homes across the United States. A cross-sectional research design linked data from Centers for Medicare & Medicaid Services, American Community Survey, the 2010 Census, and COVID-19 cases among the general population and nursing homes. Spatial cluster analysis identified specific regions with statistically higher COVID-19 cases and deaths among residents. Multivariate analysis identified risk factors at the nursing home level including, total count of fines, total staffing levels, and LPN staffing levels. County-level or place-based factors like per-capita income, average household size, population density, and minority composition were significant predictors of COVID-19 cases in the nursing home. These results provide a framework for examining further COVID-19 cases in nursing homes and highlight the need to include other community-level variables when considering risk of COVID-19 transmission and outbreaks in nursing homes.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Deaths from the COVID-19 pandemic have disproportionately affected older adults and residents in nursing homes. Although emerging research has identified place-based risk factors for the general population, little research has been conducted for nursing home populations. This GIS-based spatial modeling study aimed to determine the association between nursing home-level metrics and county-level, place-based variables with COVID-19 confirmed cases in nursing homes across the United States. A cross-sectional research design linked data from Centers for Medicare & Medicaid Services, American Community Survey, the 2010 Census, and COVID-19 cases among the general population and nursing homes. Spatial cluster analysis identified specific regions with statistically higher COVID-19 cases and deaths among residents. Multivariate analysis identified risk factors at the nursing home level including, total count of fines, total staffing levels, and LPN staffing levels. County-level or place-based factors like per-capita income, average household size, population density, and minority composition were significant predictors of COVID-19 cases in the nursing home. These results provide a framework for examining further COVID-19 cases in nursing homes and highlight the need to include other community-level variables when considering risk of COVID-19 transmission and outbreaks in nursing homes.
Subject
  • United States
  • Nursing homes
  • Population density
  • Caregiving
  • Occupational safety and health
  • 2019 disasters in China
  • Types of health care facilities
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software