AttributesValues
type
value
  • [Image: see text] The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 7.1 million people and led to over 0.4 million deaths. Currently, there is no specific anti-SARS-CoV-2 medication. New drug discovery typically takes more than 10 years. Drug repositioning becomes one of the most feasible approaches for combating COVID-19. This work curates the largest available experimental data set for SARS-CoV-2 or SARS-CoV 3CL (main) protease inhibitors. On the basis of this data set, we develop validated machine learning models with relatively low root-mean-square error to screen 1553 FDA-approved drugs as well as another 7012 investigational or off-market drugs in DrugBank. We found that many existing drugs might be potentially potent to SARS-CoV-2. The druggability of many potent SARS-CoV-2 3CL protease inhibitors is analyzed. This work offers a foundation for further experimental studies of COVID-19 drug repositioning.
Subject
  • Viral respiratory tract infections
  • Health in Saudi Arabia
  • Declared monuments of Hong Kong
  • Bat virome
  • Sarbecovirus
  • Chiroptera-borne diseases
  • Infraspecific virus taxa
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software