About: The success of logic-based methods for comparing entities heavily depends on the axioms that have been described for them in the Knowledge Base (KB). Due to the incompleteness of even large and well engineered KBs, such methods suffer from low recall when applied in real-world use cases. To address this, we designed a reasoning framework that combines logic-based subsumption with statistical methods for on-the-fly knowledge extraction. Statistical methods extract additional (missing) axioms for the compared entities with the goal of tackling the incompleteness of KBs and thus improving recall. Although this can be beneficial, it can also introduce noise (false positives or false negatives). Hence, our framework uses heuristics to assess whether knowledge extraction is likely to be advantageous and only activates the statistical components if this is the case. We instantiate our framework by combining lightweight logic-based reasoning implemented on top of existing triple-stores with an axiom extraction method that is based on the labels of concepts. Our work was motivated by industrial use cases over which we evaluate our instantiated framework, showing that it outperforms approaches that are only based on textual information. Besides the best combination of precision and recall, our implementation is also scalable and is currently used in an industrial production environment.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The success of logic-based methods for comparing entities heavily depends on the axioms that have been described for them in the Knowledge Base (KB). Due to the incompleteness of even large and well engineered KBs, such methods suffer from low recall when applied in real-world use cases. To address this, we designed a reasoning framework that combines logic-based subsumption with statistical methods for on-the-fly knowledge extraction. Statistical methods extract additional (missing) axioms for the compared entities with the goal of tackling the incompleteness of KBs and thus improving recall. Although this can be beneficial, it can also introduce noise (false positives or false negatives). Hence, our framework uses heuristics to assess whether knowledge extraction is likely to be advantageous and only activates the statistical components if this is the case. We instantiate our framework by combining lightweight logic-based reasoning implemented on top of existing triple-stores with an axiom extraction method that is based on the labels of concepts. Our work was motivated by industrial use cases over which we evaluate our instantiated framework, showing that it outperforms approaches that are only based on textual information. Besides the best combination of precision and recall, our implementation is also scalable and is currently used in an industrial production environment.
Subject
  • Problem solving methods
  • Philosophical theories
  • Philosophy of culture
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software