About: Recognition of activities, such as preparing meal or watching TV, performed by a smart home resident, can promote the independent living of elderly in a safe and comfortable environment of their own homes, for an extended period of time. Different activities performed at the same location have commonalities resulting in less inter-class variations; while the same activity performed multiple times, or by multiple residents, varies in its execution resulting in high intra-class variations. We propose a Local Feature Weighting approach (LFW) that assigns weights based on both inter-class and intra-class importance of a feature in an activity. Multiple sensors are deployed at different locations in a smart home to gather information. We exploit the obtained information, such as frequency and duration of activation of sensors, and the total sensors in an activity for feature weighting. The weights for the same features vary among activities, since a feature may have more importance for one activity but less for the other. For the classification, we exploit the two variants of K-Nearest Neighbors (KNN): Evidence Theoretic KNN (ETKNN) and Fuzzy KNN (FKNN). The evaluation of the proposed approach on three datasets, from CASAS smart home project, demonstrates its ability in the correct recognition of activities compared to the existing approaches.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Recognition of activities, such as preparing meal or watching TV, performed by a smart home resident, can promote the independent living of elderly in a safe and comfortable environment of their own homes, for an extended period of time. Different activities performed at the same location have commonalities resulting in less inter-class variations; while the same activity performed multiple times, or by multiple residents, varies in its execution resulting in high intra-class variations. We propose a Local Feature Weighting approach (LFW) that assigns weights based on both inter-class and intra-class importance of a feature in an activity. Multiple sensors are deployed at different locations in a smart home to gather information. We exploit the obtained information, such as frequency and duration of activation of sensors, and the total sensors in an activity for feature weighting. The weights for the same features vary among activities, since a feature may have more importance for one activity but less for the other. For the classification, we exploit the two variants of K-Nearest Neighbors (KNN): Evidence Theoretic KNN (ETKNN) and Fuzzy KNN (FKNN). The evaluation of the proposed approach on three datasets, from CASAS smart home project, demonstrates its ability in the correct recognition of activities compared to the existing approaches.
subject
  • Machine learning algorithms
  • Classification algorithms
  • Statistical classification
  • Search algorithms
  • Nonparametric statistics
  • Concepts in the philosophy of mind
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software