About: Japanese encephalitis is a zoonotic disease caused by the Japanese encephalitis virus (JEV). It is mainly epidemic in Asia with an estimated 69,000 cases occurring per year. However, no approved agents are available for the treatment of JEV infection, and existing vaccines cannot control various types of JEV strains. Drug repurposing is a new concept for finding new indication of existing drugs, and, recently, the concept has been used to discover new antiviral agents. Identifying host proteins involved in the progress of JEV infection and using these proteins as targets are the center of drug repurposing for JEV infection. In this study, based on the gene expression data of JEV infection and the phenome-wide association study (PheWAS) data, we identified 286 genes that participate in the progress of JEV infection using systems biology methods. The enrichment analysis of these genes suggested that the genes identified by our methods were predominantly related to viral infection pathways and immune response-related pathways. We found that bortezomib, which can target these genes, may have an effect on the treatment of JEV infection. Subsequently, we evaluated the antiviral activity of bortezomib using a JEV-infected mouse model. The results showed that bortezomib can lower JEV-induced lethality in mice, alleviate suffering in JEV-infected mice and reduce the damage in brains caused by JEV infection. This work provides an agent with new indication to treat JEV infection.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Japanese encephalitis is a zoonotic disease caused by the Japanese encephalitis virus (JEV). It is mainly epidemic in Asia with an estimated 69,000 cases occurring per year. However, no approved agents are available for the treatment of JEV infection, and existing vaccines cannot control various types of JEV strains. Drug repurposing is a new concept for finding new indication of existing drugs, and, recently, the concept has been used to discover new antiviral agents. Identifying host proteins involved in the progress of JEV infection and using these proteins as targets are the center of drug repurposing for JEV infection. In this study, based on the gene expression data of JEV infection and the phenome-wide association study (PheWAS) data, we identified 286 genes that participate in the progress of JEV infection using systems biology methods. The enrichment analysis of these genes suggested that the genes identified by our methods were predominantly related to viral infection pathways and immune response-related pathways. We found that bortezomib, which can target these genes, may have an effect on the treatment of JEV infection. Subsequently, we evaluated the antiviral activity of bortezomib using a JEV-infected mouse model. The results showed that bortezomib can lower JEV-induced lethality in mice, alleviate suffering in JEV-infected mice and reduce the damage in brains caused by JEV infection. This work provides an agent with new indication to treat JEV infection.
subject
  • Virology
  • Viral encephalitis
  • Vaccine-preventable diseases
  • Neglected diseases
  • Tropical diseases
  • RTT
  • Swine diseases
  • Taxa named by Carl Linnaeus
  • Urban animals
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software