About: Network embedding is a method to learn low-dimensional representations of nodes in networks, which aims to capture and preserve network structure. Most of the existing methods learn network embedding based on distributional similarity hypothesis while ignoring adjacency similarity property, which may cause distance bias problem in the network embedding space. To solve this problem, this paper proposes a unified framework to encode distributional similarity and measure adjacency similarity simultaneously, named DDNE. The proposed DDNE trains a siamese neural network which learns a set of non-linear transforms to project the node pairs into the same low-dimensional space based on their first-order proximity. Meanwhile, a distance constraint is used to make the distance between a pair of adjacent nodes smaller than a threshold and that of each non-adjacent nodes larger than the same threshold, which highlight the adjacency similarity. We conduct extensive experiments on four real-world datasets in three social network analysis tasks, including network reconstruction, attribute prediction and recommendation. The experimental results demonstrate the competitive and superior performance of our approach in generating effective network embedding vectors over baselines.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Network embedding is a method to learn low-dimensional representations of nodes in networks, which aims to capture and preserve network structure. Most of the existing methods learn network embedding based on distributional similarity hypothesis while ignoring adjacency similarity property, which may cause distance bias problem in the network embedding space. To solve this problem, this paper proposes a unified framework to encode distributional similarity and measure adjacency similarity simultaneously, named DDNE. The proposed DDNE trains a siamese neural network which learns a set of non-linear transforms to project the node pairs into the same low-dimensional space based on their first-order proximity. Meanwhile, a distance constraint is used to make the distance between a pair of adjacent nodes smaller than a threshold and that of each non-adjacent nodes larger than the same threshold, which highlight the adjacency similarity. We conduct extensive experiments on four real-world datasets in three social network analysis tasks, including network reconstruction, attribute prediction and recommendation. The experimental results demonstrate the competitive and superior performance of our approach in generating effective network embedding vectors over baselines.
subject
  • Cultural economics
  • Philosophical theories
  • Philosophy of culture
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software