About: MicroRNAs (miRNAs) are a class of noncoding RNAs involved in posttranscriptional regulation of gene expression and many critical roles in numerous biological processes. Porcine epidemic diarrhea virus (PEDV), the etiological agent of porcine epidemic diarrhea, causes substantial economic loss in the swine industry worldwide. Previous studies reported miRNA involvement in viral infection; however, their role in regulating PEDV infection remains unknown. In this study, we investigated the regulatory relationship between miRNA-221-5p and PEDV infection, finding that miR-221-5p overexpression inhibited PEDV replication in a dose-dependent manner, and that silencing endogenous miR-221-5p enhanced viral replication. Our results showed that miR-221-5p directly targets the 3′ untranslated region (UTR) of PEDV genomic RNA to inhibit PEDV replication, and that miR-221-5p overexpression activates nuclear factor (NF)-κB signaling via p65 nuclear translocation, thereby upregulating interferon (IFN)-β, IFN-stimulated gene 15, and MX1 expression during CH/HBTS/2017 infection. We subsequently identified NF-κB-inhibitor α and suppressor of cytokine signaling 1, negative regulators of the NF-κB pathway, as miR-221-5p targets. These results demonstrated the ability of miR-221-5p to inhibit PEDV replication by targeting the 3’ UTR of the viral genome and activating the NF-κB-signaling pathway. Our findings will aid the development of preventive and therapeutic strategies for PEDV infection.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • MicroRNAs (miRNAs) are a class of noncoding RNAs involved in posttranscriptional regulation of gene expression and many critical roles in numerous biological processes. Porcine epidemic diarrhea virus (PEDV), the etiological agent of porcine epidemic diarrhea, causes substantial economic loss in the swine industry worldwide. Previous studies reported miRNA involvement in viral infection; however, their role in regulating PEDV infection remains unknown. In this study, we investigated the regulatory relationship between miRNA-221-5p and PEDV infection, finding that miR-221-5p overexpression inhibited PEDV replication in a dose-dependent manner, and that silencing endogenous miR-221-5p enhanced viral replication. Our results showed that miR-221-5p directly targets the 3′ untranslated region (UTR) of PEDV genomic RNA to inhibit PEDV replication, and that miR-221-5p overexpression activates nuclear factor (NF)-κB signaling via p65 nuclear translocation, thereby upregulating interferon (IFN)-β, IFN-stimulated gene 15, and MX1 expression during CH/HBTS/2017 infection. We subsequently identified NF-κB-inhibitor α and suppressor of cytokine signaling 1, negative regulators of the NF-κB pathway, as miR-221-5p targets. These results demonstrated the ability of miR-221-5p to inhibit PEDV replication by targeting the 3’ UTR of the viral genome and activating the NF-κB-signaling pathway. Our findings will aid the development of preventive and therapeutic strategies for PEDV infection.
Subject
  • Virology
  • RNA
  • Gene expression
  • Alphacoronaviruses
  • MicroRNA
  • Feces
  • Mythology
  • Swine diseases
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software