AttributesValues
type
value
  • SARS-CoV2 infection leads to cardiac injury and dysfunction in 20-30% of hospitalized patients1 and higher rates of mortality in patients with pre-existing cardiovascular disease2,3. Inflammatory factors released as part of the ‘cytokine storm’ are thought to play a critical role in cardiac dysfunction in severe COVID-19 patients4. Here we use human cardiac organoids combined with high sensitivity phosphoproteomics and single nuclei RNA sequencing to identify inflammatory targets inducing cardiac dysfunction. This state-of-the-art pipeline allowed rapid deconvolution of mechanisms and identification of putative therapeutics. We identify a novel interferon-γ driven BRD4 (bromodomain protein 4)-fibrosis/iNOS axis as a key intracellular mediator of inflammation-induced cardiac dysfunction. This axis is therapeutically targetable using BRD4 inhibitors, which promoted full recovery of function in human cardiac organoids and prevented severe inflammation and death in a cytokine-storm mouse model. The BRD inhibitor INCB054329 was the most efficacious, and is a prime candidate for drug repurposing to attenuate cardiac dysfunction and improve COVID-19 mortality in humans.
Subject
  • Immunology
  • Rheumatology
  • Immunostimulants
  • Organ failure
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software