About: The Coronavirus disease 2019 (COVID-19) is raging across the world. The radiomics, which explores huge amounts of features from medical image for disease diagnosis, may help the screen of the COVID-19. In this study, we aim to develop a radiomic signature to screen COVID-19 from CT images. We retrospectively collect 75 pneumonia patients from Beijing Youan Hospital, including 46 patients with COVID-19 and 29 other types of pneumonias. These patients are divided into training set (n = 50) and test set (n = 25) at random. We segment the lung lesions from the CT images, and extract 77 radiomic features from the lesions. Then unsupervised consensus clustering and multiple cross-validation are utilized to select the key features that are associated with the COVID-19. In the experiments, while twenty-three radiomic features are found to be highly associated with COVID-19, four key features are screened and used as the inputs of support vector machine to build the radiomic signature. We use area under the receiver operating characteristic curve (AUC) and calibration curve to assess the performance of our model. It yields AUCs of 0.862 and 0.826 in the training set and the test set respectively. We also perform the stratified analysis and find that its predictive ability is not affected by gender, age, chronic disease and degree of severity. In conclusion, we investigate the value of radiomics in screening COVID-19, and the experimental results suggest the radiomic signature could be a potential tool for diagnosis of COVID-19.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The Coronavirus disease 2019 (COVID-19) is raging across the world. The radiomics, which explores huge amounts of features from medical image for disease diagnosis, may help the screen of the COVID-19. In this study, we aim to develop a radiomic signature to screen COVID-19 from CT images. We retrospectively collect 75 pneumonia patients from Beijing Youan Hospital, including 46 patients with COVID-19 and 29 other types of pneumonias. These patients are divided into training set (n = 50) and test set (n = 25) at random. We segment the lung lesions from the CT images, and extract 77 radiomic features from the lesions. Then unsupervised consensus clustering and multiple cross-validation are utilized to select the key features that are associated with the COVID-19. In the experiments, while twenty-three radiomic features are found to be highly associated with COVID-19, four key features are screened and used as the inputs of support vector machine to build the radiomic signature. We use area under the receiver operating characteristic curve (AUC) and calibration curve to assess the performance of our model. It yields AUCs of 0.862 and 0.826 in the training set and the test set respectively. We also perform the stratified analysis and find that its predictive ability is not affected by gender, age, chronic disease and degree of severity. In conclusion, we investigate the value of radiomics in screening COVID-19, and the experimental results suggest the radiomic signature could be a potential tool for diagnosis of COVID-19.
subject
  • Zoonoses
  • Viral respiratory tract infections
  • Medical physics
  • COVID-19
  • Metropolitan areas of China
  • Occupational safety and health
  • Regression variable selection
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software