About: Urgent demands of assessing respiratory disease transmission in airliner cabins had awakened from the COVID-19 pandemics. This study numerically investigated the cough flow and its time-dependent jet-effects on the transport characteristics of respiratory-induced contaminants in passengers' local environments. Transient simulations were conducted in a three-row Boeing 737 cabin section, while respiratory contaminants (2 μm–1000 μm) were released by different passengers with and without coughing and were tracked by the Lagrangian approach. Outcomes revealed significant influences of cough-jets on passengers' local airflow field by breaking up the ascending passenger thermal plumes and inducing several local airflow recirculation in the front of passengers. Cough flow could be locked in the local environments (i.e. near and intermediate fields) of passengers. Results from comparative studies also revealed significant increases of residence times (up to 50%) and extended travel distances of contaminants up to 200 μm after considering cough flow, whereas contaminants travel displacements still remained similar. This was indicating more severe contaminate suspensions in passengers’ local environments. The cough-jets was found having long and effective impacts on contaminants transport up to 4 s, which was 8 times longer than the duration of cough and contaminants release process (0.5 s). Also, comparing to the ventilated flow, cough flow had considerable impacts to a much wider size range of contaminants (up to 200 μm) due to its strong jet-effects.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Urgent demands of assessing respiratory disease transmission in airliner cabins had awakened from the COVID-19 pandemics. This study numerically investigated the cough flow and its time-dependent jet-effects on the transport characteristics of respiratory-induced contaminants in passengers' local environments. Transient simulations were conducted in a three-row Boeing 737 cabin section, while respiratory contaminants (2 μm–1000 μm) were released by different passengers with and without coughing and were tracked by the Lagrangian approach. Outcomes revealed significant influences of cough-jets on passengers' local airflow field by breaking up the ascending passenger thermal plumes and inducing several local airflow recirculation in the front of passengers. Cough flow could be locked in the local environments (i.e. near and intermediate fields) of passengers. Results from comparative studies also revealed significant increases of residence times (up to 50%) and extended travel distances of contaminants up to 200 μm after considering cough flow, whereas contaminants travel displacements still remained similar. This was indicating more severe contaminate suspensions in passengers’ local environments. The cough-jets was found having long and effective impacts on contaminants transport up to 4 s, which was 8 times longer than the duration of cough and contaminants release process (0.5 s). Also, comparing to the ventilated flow, cough flow had considerable impacts to a much wider size range of contaminants (up to 200 μm) due to its strong jet-effects.
Subject
  • Cough
  • Pandemics
  • Boeing 737
  • Economic problems
  • Units of length
  • Orders of magnitude (length)
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software