About: In this paper, we present a novel method for jointly detecting and segmenting multiple objects from an untrimmed video. Unlike most existing video object segmentation methods that can only handle a trimmed video in which all video frames contain the target objects, we address a more practical and difficult problem, i.e., joint multi-object detection and segmentation from an untrimmed video where the target objects do not always appear per frame. In particular, our method consists of two modules, i.e., object decision module and object segmentation module. The object decision module is used to detect the objects and decide which target objects need to be separated out from video. As there are usually two or more target objects and they do not always appear in the whole video, we introduce the data association into object decision module to identify their correspondences among frames. The object segmentation module aims to separate the target objects identified by object decision module. In order to extensively evaluate the proposed method, we introduce a new dataset named UNVOSeg dataset, in which [Formula: see text] of the video frames do not contain objects. Experimental results on four datasets demonstrate that our method outperforms most of the state-of-the-art approaches.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • In this paper, we present a novel method for jointly detecting and segmenting multiple objects from an untrimmed video. Unlike most existing video object segmentation methods that can only handle a trimmed video in which all video frames contain the target objects, we address a more practical and difficult problem, i.e., joint multi-object detection and segmentation from an untrimmed video where the target objects do not always appear per frame. In particular, our method consists of two modules, i.e., object decision module and object segmentation module. The object decision module is used to detect the objects and decide which target objects need to be separated out from video. As there are usually two or more target objects and they do not always appear in the whole video, we introduce the data association into object decision module to identify their correspondences among frames. The object segmentation module aims to separate the target objects identified by object decision module. In order to extensively evaluate the proposed method, we introduce a new dataset named UNVOSeg dataset, in which [Formula: see text] of the video frames do not contain objects. Experimental results on four datasets demonstrate that our method outperforms most of the state-of-the-art approaches.
subject
  • Image segmentation
  • Digital imaging
  • Patent law
  • Philosophical movements
  • Object recognition and categorization
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software