About: Compressive sensing (CS) provides a potential platform for acquiring slow and sequential data, as in magnetic resonance (MR) imaging. However, CS requires high computational time for reconstructing MR images from sparse k-space data, which restricts its usage for high speed online reconstruction and wireless communications. Another major challenge is removal of Rician noise from magnitude MR images which changes the image characteristics, and thus affects the clinical usefulness. The work carried out so far predominantly models MRI noise as a Gaussian type. The use of advanced noise models primarily Rician type in CS paradigm is less explored. In this work, we develop a novel framework to reconstruct MR images with high speed and visual quality from noisy sparse k-space data. The proposed algorithm employs a convolutional neural network (CNN) to denoise MR images corrupted with Rician noise. To extract local features, the algorithm exploits signal similarities by processing similar patches as a group. An imperative reduction in the run time has been achieved as the CNN has been trained on a GPU with Convolutional Architecture for Fast Feature Embedding framework making it suitable for online reconstruction. The CNN based reconstruction also eliminates the necessity of optimization and prediction of noise level while denoising, which is the major advantage over existing state-of-the-art-techniques. Analytical experiments have been carried out with various undersampling schemes and the experimental results demonstrate high accuracy and consistent peak signal to noise ratio even at 20-fold undersampling. High undersampling rates provide scope for wireless transmission of k-space data and high speed reconstruction provides applicability of our algorithm for remote health monitoring.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Compressive sensing (CS) provides a potential platform for acquiring slow and sequential data, as in magnetic resonance (MR) imaging. However, CS requires high computational time for reconstructing MR images from sparse k-space data, which restricts its usage for high speed online reconstruction and wireless communications. Another major challenge is removal of Rician noise from magnitude MR images which changes the image characteristics, and thus affects the clinical usefulness. The work carried out so far predominantly models MRI noise as a Gaussian type. The use of advanced noise models primarily Rician type in CS paradigm is less explored. In this work, we develop a novel framework to reconstruct MR images with high speed and visual quality from noisy sparse k-space data. The proposed algorithm employs a convolutional neural network (CNN) to denoise MR images corrupted with Rician noise. To extract local features, the algorithm exploits signal similarities by processing similar patches as a group. An imperative reduction in the run time has been achieved as the CNN has been trained on a GPU with Convolutional Architecture for Fast Feature Embedding framework making it suitable for online reconstruction. The CNN based reconstruction also eliminates the necessity of optimization and prediction of noise level while denoising, which is the major advantage over existing state-of-the-art-techniques. Analytical experiments have been carried out with various undersampling schemes and the experimental results demonstrate high accuracy and consistent peak signal to noise ratio even at 20-fold undersampling. High undersampling rates provide scope for wireless transmission of k-space data and high speed reconstruction provides applicability of our algorithm for remote health monitoring.
Subject
  • Patent law
  • Stable distributions
  • OpenCL compute devices
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software