AttributesValues
type
value
  • Applied Artificial Intelligence (AAI) and, especially Machine Learning (ML), both had recently a breakthrough with high-performant hardware for Deep Learning [1]. Additionally, big companies like Huawei and Google are adapting their product philosophy to AAI and ML [2–4]. Using ML-based systems require always a training data set to achieve a usable, i.e. trained, AAI system. The quality of the training data set determines the quality of the predictions. One important quality factor is that the training data are unbiased. Bias may lead in the worst case to incorrect and unusable predictions. This paper investigates the most important types of bias, namely syntactic and semantic bias. Countermeasures and methods to detect these biases are provided to diminish the deficiencies.
Subject
  • Machine learning
  • Technology companies based in the San Francisco Bay Area
  • Multinational companies headquartered in the United States
  • Huawei
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software