About: Abstract Aluminum alloys are significant in various applications, and the desire is strong to develop higher strength with balanced other properties out of high Zn and Mg contents in aluminum. However, high contents of Zn and Mg will make the matrix brittle and incompatible for mass manufacturing. As nanoparticles could effectively and dynamically control the brittle secondary phases, it opens a new route to design and manufacture high-Zn and high-Mg aluminum alloys. Here, we demonstrate the feasibility of nanomanufacturing of Al-12Zn-3.7Mg-1Cu alloy system with the help from TiC nanoparticles for potential ultrahigh-strength light-weight alloys. By applying the “hot rolling-natural aging” and “solution treatment-natural aging” processing routes, Al-12Zn-3.7Mg-1Cu alloy with TiC nanoparticles can achieve higher microhardness via natural aging and better machinability when compared with the pure Al-12Zn-3.7Mg-1Cu alloy. Microstructure and thermodynamic studies reveal that the reasons for the peak hardness difference of Al-12Zn-3.7Mg-1Cu alloy and Al-12Zn-3.7Mg-1Cu/1.5 vol.% TiC nanocomposites are due to the free energy difference by solution treatment temperature and the strain energy sustained by the residual secondary phases. The enhanced mechanical properties in Al-12Zn-3.7Mg-1Cu alloy with TiC nanoparticles at the peak-microhardness state after “solution treatment-natural aging” processing route prove the feasibility of the abovementioned nano-treating manufacturing method.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Aluminum alloys are significant in various applications, and the desire is strong to develop higher strength with balanced other properties out of high Zn and Mg contents in aluminum. However, high contents of Zn and Mg will make the matrix brittle and incompatible for mass manufacturing. As nanoparticles could effectively and dynamically control the brittle secondary phases, it opens a new route to design and manufacture high-Zn and high-Mg aluminum alloys. Here, we demonstrate the feasibility of nanomanufacturing of Al-12Zn-3.7Mg-1Cu alloy system with the help from TiC nanoparticles for potential ultrahigh-strength light-weight alloys. By applying the “hot rolling-natural aging” and “solution treatment-natural aging” processing routes, Al-12Zn-3.7Mg-1Cu alloy with TiC nanoparticles can achieve higher microhardness via natural aging and better machinability when compared with the pure Al-12Zn-3.7Mg-1Cu alloy. Microstructure and thermodynamic studies reveal that the reasons for the peak hardness difference of Al-12Zn-3.7Mg-1Cu alloy and Al-12Zn-3.7Mg-1Cu/1.5 vol.% TiC nanocomposites are due to the free energy difference by solution treatment temperature and the strain energy sustained by the residual secondary phases. The enhanced mechanical properties in Al-12Zn-3.7Mg-1Cu alloy with TiC nanoparticles at the peak-microhardness state after “solution treatment-natural aging” processing route prove the feasibility of the abovementioned nano-treating manufacturing method.
subject
  • Nanomaterials
  • Thermodynamics
  • Reducing agents
  • Chemical elements
  • Post-transition metals
  • Pyrotechnic fuels
  • Rolling mills
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software