About: The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a significant impact on public healthcare. Due to rising skepticism towards the sensitivity of RT-PCR as screening method, medical imaging like computed tomography offers great potential as alternative. For this reason, automated image segmentation is highly desired as clinical decision support for quantitative assessment and disease monitoring. However, publicly available COVID-19 imaging data is limited which leads to overfitting of traditional approaches. To address this problem, we propose an innovative automated segmentation pipeline for COVID-19 infected regions, which is able to handle small datasets by utilization as variant databases. Our method focuses on on-the-fly generation of unique and random image patches for training by performing several preprocessing methods and exploiting extensive data augmentation. For further reduction of the overfitting risk, we implemented a standard 3D U-Net architecture instead of new or computational complex neural network architectures. Through a 5-fold cross-validation on 20 CT scans of COVID-19 patients, we were able to develop a highly accurate as well as robust segmentation model for lungs and COVID-19 infected regions without overfitting on the limited data. Our method achieved Dice similarity coefficients of 0.956 for lungs and 0.761 for infection. We demonstrated that the proposed method outperforms related approaches, advances the state-of-the-art for COVID-19 segmentation and improves medical image analysis with limited data. The code and model are available under the following link: https://github.com/frankkramer-lab/covid19.MIScnn   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a significant impact on public healthcare. Due to rising skepticism towards the sensitivity of RT-PCR as screening method, medical imaging like computed tomography offers great potential as alternative. For this reason, automated image segmentation is highly desired as clinical decision support for quantitative assessment and disease monitoring. However, publicly available COVID-19 imaging data is limited which leads to overfitting of traditional approaches. To address this problem, we propose an innovative automated segmentation pipeline for COVID-19 infected regions, which is able to handle small datasets by utilization as variant databases. Our method focuses on on-the-fly generation of unique and random image patches for training by performing several preprocessing methods and exploiting extensive data augmentation. For further reduction of the overfitting risk, we implemented a standard 3D U-Net architecture instead of new or computational complex neural network architectures. Through a 5-fold cross-validation on 20 CT scans of COVID-19 patients, we were able to develop a highly accurate as well as robust segmentation model for lungs and COVID-19 infected regions without overfitting on the limited data. Our method achieved Dice similarity coefficients of 0.956 for lungs and 0.761 for infection. We demonstrated that the proposed method outperforms related approaches, advances the state-of-the-art for COVID-19 segmentation and improves medical image analysis with limited data. The code and model are available under the following link: https://github.com/frankkramer-lab/covid19.MIScnn
Subject
  • Zoonoses
  • Viral respiratory tract infections
  • Medical physics
  • COVID-19
  • Multi-dimensional geometry
  • Occupational safety and health
  • Patent law
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software