About: Some cancer patients treated with Atezolizumab, PD-L1 antibody drug launched by Genentech, quickly developed anti-drug antibody (ADA), led to loss of efficacy. This was likely due to the heavy aggregation of Atezolizumab, caused by mutation of N297A for removing unwanted antibody-dependent cytotoxicity (ADCC) of IgG1 antibody drug. Here, we developed a new version of Atezolizumab (Maxatezo), which was demonstrated better anti-tumor efficacy in vivo. In Atezolizumab, we mutated 297A to 297N back to bring back the glycosylation, and inserted a short sequence GGGS between G237 and G238 in the hinge region of the IgG1 heavy chain. Our data shown that insertion of GGGS, without altering the anti-PD-L1 antibody affinity and inhibitory activity, completely abolished the ADCC activity, as same as Atezolizumab. Moreover, the insertion of GGGS, without altering the glycosylation profile of IgG1, increased the yields of anti-PD-L1 antibody considerately. Additionally, glycosylation improved the stability yet reduced the amounts of aggregations in the antibody solutions. In turn, the level of ADA in animals treated with Maxatezo was 70% lower than the ones treated with Atezolizumab. Most importantly, at the same 10mg/kg dose, the anti-tumor activity of Maxatezo had attained 98% compared to that of Atezolizumab at 68%.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Some cancer patients treated with Atezolizumab, PD-L1 antibody drug launched by Genentech, quickly developed anti-drug antibody (ADA), led to loss of efficacy. This was likely due to the heavy aggregation of Atezolizumab, caused by mutation of N297A for removing unwanted antibody-dependent cytotoxicity (ADCC) of IgG1 antibody drug. Here, we developed a new version of Atezolizumab (Maxatezo), which was demonstrated better anti-tumor efficacy in vivo. In Atezolizumab, we mutated 297A to 297N back to bring back the glycosylation, and inserted a short sequence GGGS between G237 and G238 in the hinge region of the IgG1 heavy chain. Our data shown that insertion of GGGS, without altering the anti-PD-L1 antibody affinity and inhibitory activity, completely abolished the ADCC activity, as same as Atezolizumab. Moreover, the insertion of GGGS, without altering the glycosylation profile of IgG1, increased the yields of anti-PD-L1 antibody considerately. Additionally, glycosylation improved the stability yet reduced the amounts of aggregations in the antibody solutions. In turn, the level of ADA in animals treated with Maxatezo was 70% lower than the ones treated with Atezolizumab. Most importantly, at the same 10mg/kg dose, the anti-tumor activity of Maxatezo had attained 98% compared to that of Atezolizumab at 68%.
Subject
  • Immunology
  • Antibodies
  • Glycoproteins
  • Reagents for biochemistry
  • Companies based in San Mateo County, California
  • Monoclonal antibodies for tumors
  • Genentech
  • Genentech brands
  • Hoffmann-La Roche brands
  • Mutationism
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software