About: Background. We report the temporal-spatial spread of severe acute respiratory syndrome (SARS) among inpatients in a hospital ward during a major nosocomial outbreak and discuss possible mechanisms for the outbreak. Methods. All inpatients who had stayed in the same ward as the initial index case patient for any duration before isolation were recruited into a cohort and followed up to document the occurrence of SARS. The normalized concentration of virus-laden aerosols at different locations of the ward was estimated by use of computational fluid dynamics modeling. The attack rates in the various subgroups stratified by bed location were calculated. Multivariate Cox proportional hazards regression was used to document important risk factors. Results. The overall attack rate of SARS was 41% (30 of 74 subjects). It was 65%, 52%, and 18% in the same bay, adjacent bay, and distant bays, respectively (P = .001). Computation fluid dynamics modeling indicated that the normalized concentration of virus-laden aerosols was highest in the same bay and lowest in the distant bays. Cox regression indicated that staying in the ward on 6 or 10 March entailed higher risk, as well as staying in the same or adjacent bays. The epidemic curve showed 2 peaks, and stratified analyses by bed location suggested >1 generation of spread. Conclusions. The temporal-spatial spread of SARS in the ward was consistent with airborne transmission, as modeled by use of computational fluid dynamics. Infected health care workers likely acted as secondary sources in the latter phase of the outbreak.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Background. We report the temporal-spatial spread of severe acute respiratory syndrome (SARS) among inpatients in a hospital ward during a major nosocomial outbreak and discuss possible mechanisms for the outbreak. Methods. All inpatients who had stayed in the same ward as the initial index case patient for any duration before isolation were recruited into a cohort and followed up to document the occurrence of SARS. The normalized concentration of virus-laden aerosols at different locations of the ward was estimated by use of computational fluid dynamics modeling. The attack rates in the various subgroups stratified by bed location were calculated. Multivariate Cox proportional hazards regression was used to document important risk factors. Results. The overall attack rate of SARS was 41% (30 of 74 subjects). It was 65%, 52%, and 18% in the same bay, adjacent bay, and distant bays, respectively (P = .001). Computation fluid dynamics modeling indicated that the normalized concentration of virus-laden aerosols was highest in the same bay and lowest in the distant bays. Cox regression indicated that staying in the ward on 6 or 10 March entailed higher risk, as well as staying in the same or adjacent bays. The epidemic curve showed 2 peaks, and stratified analyses by bed location suggested >1 generation of spread. Conclusions. The temporal-spatial spread of SARS in the ward was consistent with airborne transmission, as modeled by use of computational fluid dynamics. Infected health care workers likely acted as secondary sources in the latter phase of the outbreak.
Subject
  • Severe acute respiratory syndrome
  • Viral respiratory tract infections
  • Hospitals
  • Bird diseases
  • Syndromes affecting the respiratory system
  • Zoonotic bacterial diseases
  • Atypical pneumonias
  • Bat virome
  • Sarbecovirus
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software