About: Recent drug discovery efforts have utilized high throughput screening (HTS) of large chemical libraries to identify compounds that modify the activity of discrete molecular targets. The molecular target approach to drug screening is widely used in the pharmaceutical and biotechnology industries, because of the amount of knowledge now available regarding protein structure that has been obtained by computer simulation. The molecular target approach requires that the structure of target molecules, and an understanding of their physiological functions, is known. This approach to drug discovery may, however, limit the identification of novel drugs. As an alternative, the phenotypic- or pathway-screening approach to drug discovery is gaining popularity, particularly in the academic sector. This approach not only provides the opportunity to identify promising drug candidates, but also enables novel information regarding biological pathways to be unveiled. Reporter assays are a powerful tool for the phenotypic screening of compound libraries. Of the various reporter genes that can be used in such assays, those encoding secreted proteins enable the screening of hit molecules in both living cells and animals. Cell- and animal-based screens enable simultaneous evaluation of drug metabolism or toxicity with biological activity. Therefore, drug candidates identified in these screens may have increased biological efficacy and a lower risk of side effects in humans. In this article, we review the reporter bioassay systems available for phenotypic drug discovery.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Recent drug discovery efforts have utilized high throughput screening (HTS) of large chemical libraries to identify compounds that modify the activity of discrete molecular targets. The molecular target approach to drug screening is widely used in the pharmaceutical and biotechnology industries, because of the amount of knowledge now available regarding protein structure that has been obtained by computer simulation. The molecular target approach requires that the structure of target molecules, and an understanding of their physiological functions, is known. This approach to drug discovery may, however, limit the identification of novel drugs. As an alternative, the phenotypic- or pathway-screening approach to drug discovery is gaining popularity, particularly in the academic sector. This approach not only provides the opportunity to identify promising drug candidates, but also enables novel information regarding biological pathways to be unveiled. Reporter assays are a powerful tool for the phenotypic screening of compound libraries. Of the various reporter genes that can be used in such assays, those encoding secreted proteins enable the screening of hit molecules in both living cells and animals. Cell- and animal-based screens enable simultaneous evaluation of drug metabolism or toxicity with biological activity. Therefore, drug candidates identified in these screens may have increased biological efficacy and a lower risk of side effects in humans. In this article, we review the reporter bioassay systems available for phenotypic drug discovery.
Subject
  • Pharmaceutics
  • Pharmacognosy
  • Secretion
  • Drug discovery
  • Bioactivity
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software