About: Nearly every country is now combating the 2019 novel coronavirus (COVID-19). It has been hypothesized that if COVID-19 exhibits seasonality, changing temperatures in the coming months will shift transmission patterns around the world. Such projections, however, require an estimate of the relationship between COVID-19 and temperature at a global scale, and one that isolates the role of temperature from confounding factors, such as public health capacity. This paper provides the first plausibly causal estimates of the relationship between COVID-19 transmission and local temperature using a global sample comprising of 166,686 confirmed new COVID-19 cases from 134 countries from January 22, 2020 to March 15, 2020. We find robust statistical evidence that a 1°C increase in local temperature reduces transmission by 13% [-21%, -4%, 95%CI]. In contrast, we do not find that specific humidity or precipitation influence transmission. Our statistical approach separates effects of climate variation on COVID-19 transmission from other potentially correlated factors, such as differences in public health responses across countries and heterogeneous population densities. Using constructions of expected seasonal temperatures, we project that changing temperatures between March 2020 and July 2020 will cause COVID-19 transmission to fall by 43% on average for Northern Hemisphere countries and to rise by 71% on average for Southern Hemisphere countries. However, these patterns reverse as the boreal winter approaches, with seasonal temperatures in January 2021 increasing average COVID-19 transmission by 59% relative to March 2020 in northern countries and lowering transmission by 2% in southern countries. These findings suggest that Southern Hemisphere countries should expect greater transmission in the coming months. Moreover, Northern Hemisphere countries face a crucial window of opportunity: if contagion-containing policy interventions can dramatically reduce COVID-19 cases with the aid of the approaching warmer months, it may be possible to avoid a second wave of COVID-19 next winter.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Nearly every country is now combating the 2019 novel coronavirus (COVID-19). It has been hypothesized that if COVID-19 exhibits seasonality, changing temperatures in the coming months will shift transmission patterns around the world. Such projections, however, require an estimate of the relationship between COVID-19 and temperature at a global scale, and one that isolates the role of temperature from confounding factors, such as public health capacity. This paper provides the first plausibly causal estimates of the relationship between COVID-19 transmission and local temperature using a global sample comprising of 166,686 confirmed new COVID-19 cases from 134 countries from January 22, 2020 to March 15, 2020. We find robust statistical evidence that a 1°C increase in local temperature reduces transmission by 13% [-21%, -4%, 95%CI]. In contrast, we do not find that specific humidity or precipitation influence transmission. Our statistical approach separates effects of climate variation on COVID-19 transmission from other potentially correlated factors, such as differences in public health responses across countries and heterogeneous population densities. Using constructions of expected seasonal temperatures, we project that changing temperatures between March 2020 and July 2020 will cause COVID-19 transmission to fall by 43% on average for Northern Hemisphere countries and to rise by 71% on average for Southern Hemisphere countries. However, these patterns reverse as the boreal winter approaches, with seasonal temperatures in January 2021 increasing average COVID-19 transmission by 59% relative to March 2020 in northern countries and lowering transmission by 2% in southern countries. These findings suggest that Southern Hemisphere countries should expect greater transmission in the coming months. Moreover, Northern Hemisphere countries face a crucial window of opportunity: if contagion-containing policy interventions can dramatically reduce COVID-19 cases with the aid of the approaching warmer months, it may be possible to avoid a second wave of COVID-19 next winter.
Subject
  • Zoonoses
  • Viral respiratory tract infections
  • COVID-19
  • Northern Hemisphere
  • Population density
  • Occupational safety and health
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software