About: Half-precision computation refers to performing floating-point operations in a 16-bit format. While half-precision has been driven largely by machine learning applications, recent algorithmic advances in numerical linear algebra have discovered beneficial use cases for half precision in accelerating the solution of linear systems of equations at higher precisions. In this paper, we present a high-performance, mixed-precision linear solver ([Formula: see text]) for symmetric positive definite systems in double-precision using graphics processing units (GPUs). The solver is based on a mixed-precision Cholesky factorization that utilizes the high-performance tensor core units in CUDA-enabled GPUs. Since the Cholesky factors are affected by the low precision, an iterative refinement (IR) solver is required to recover the solution back to double-precision accuracy. Two different types of IR solvers are discussed on a wide range of test matrices. A preprocessing step is also developed, which scales and shifts the matrix, if necessary, in order to preserve its positive-definiteness in lower precisions. Our experiments on the V100 GPU show that performance speedups are up to 4.7[Formula: see text] against a direct double-precision solver. However, matrix properties such as the condition number and the eigenvalue distribution can affect the convergence rate, which would consequently affect the overall performance.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Half-precision computation refers to performing floating-point operations in a 16-bit format. While half-precision has been driven largely by machine learning applications, recent algorithmic advances in numerical linear algebra have discovered beneficial use cases for half precision in accelerating the solution of linear systems of equations at higher precisions. In this paper, we present a high-performance, mixed-precision linear solver ([Formula: see text]) for symmetric positive definite systems in double-precision using graphics processing units (GPUs). The solver is based on a mixed-precision Cholesky factorization that utilizes the high-performance tensor core units in CUDA-enabled GPUs. Since the Cholesky factors are affected by the low precision, an iterative refinement (IR) solver is required to recover the solution back to double-precision accuracy. Two different types of IR solvers are discussed on a wide range of test matrices. A preprocessing step is also developed, which scales and shifts the matrix, if necessary, in order to preserve its positive-definiteness in lower precisions. Our experiments on the V100 GPU show that performance speedups are up to 4.7[Formula: see text] against a direct double-precision solver. However, matrix properties such as the condition number and the eigenvalue distribution can affect the convergence rate, which would consequently affect the overall performance.
Subject
  • Video cards
  • Software quality
  • OpenCL compute devices
  • Numerical linear algebra
  • Binary arithmetic
  • Floating point types
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software