About: In December 2019, the first patients in Wuhan, China were diagnosed with a primary atypical pneumonia, which showed to be unknown and contagious. Since then, known as COVID-19 disease, the responsible viral pathogen, SARS-CoV-2, has spread around the world in a pandemic. Decisions on how to deal with the crisis are often based on simulations of the pandemic spread of the virus. The results of some of these, as well as their methodology and possibilities for improvement, will be described in more detail in this paper in order to inform beyond the current public health dogma called%22flatten-the-curve%22. There are several ways to model an epidemic in order to simulate the spread of diseases. Depending on the timeliness, scope and quality of the associated real data, these multivariable models differ in the value of used parameters, but also in the selection of considered influencing factors. It was exemplarily shown that epidemics in their course are simulated more realistically by models that assume subexponential growth. Furthermore, various simulations of the COVID-19 pandemic were presented in an European perspective, compared against each other and discussed in more detail. It is difficult to estimate how credible the simulations of the pandemic models currently are, so it remains to be seen whether the spread of the pandemic can be effectively reduced by the measures taken. Whether a model works well in reality is largely determined by the quality and scope of its underlying data. Past studies have shown that countermeasures are able to reduce reproduction numbers or transmission rates in epidemics. In addition to that, the presented modelling study provides a good framework for the creation of subexponential-growth-models for assessing the spread of COVID-19.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • In December 2019, the first patients in Wuhan, China were diagnosed with a primary atypical pneumonia, which showed to be unknown and contagious. Since then, known as COVID-19 disease, the responsible viral pathogen, SARS-CoV-2, has spread around the world in a pandemic. Decisions on how to deal with the crisis are often based on simulations of the pandemic spread of the virus. The results of some of these, as well as their methodology and possibilities for improvement, will be described in more detail in this paper in order to inform beyond the current public health dogma called%22flatten-the-curve%22. There are several ways to model an epidemic in order to simulate the spread of diseases. Depending on the timeliness, scope and quality of the associated real data, these multivariable models differ in the value of used parameters, but also in the selection of considered influencing factors. It was exemplarily shown that epidemics in their course are simulated more realistically by models that assume subexponential growth. Furthermore, various simulations of the COVID-19 pandemic were presented in an European perspective, compared against each other and discussed in more detail. It is difficult to estimate how credible the simulations of the pandemic models currently are, so it remains to be seen whether the spread of the pandemic can be effectively reduced by the measures taken. Whether a model works well in reality is largely determined by the quality and scope of its underlying data. Past studies have shown that countermeasures are able to reduce reproduction numbers or transmission rates in epidemics. In addition to that, the presented modelling study provides a good framework for the creation of subexponential-growth-models for assessing the spread of COVID-19.
subject
  • Virology
  • COVID-19
  • BRICS nations
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software