AttributesValues
type
value
  • Sentiment-to-sentiment transfer involves changing the sentiment of the given text while preserving the underlying information. In this work, we present a model SentiInc for sentiment-to-sentiment transfer using unpaired mono-sentiment data. Existing sentiment-to-sentiment transfer models ignore the valuable sentiment-specific details already present in the text. We address this issue by providing a simple framework for encoding sentiment-specific information in the target sentence while preserving the content information. This is done by incorporating sentiment based loss in the back-translation based style transfer. Extensive experiments over the Yelp dataset show that the SentiInc outperforms state-of-the-art methods by a margin of as large as [Formula: see text]11% in G-score. The results also demonstrate that our model produces sentiment-accurate and information-preserved sentences.
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software