About: Human communities are organized in complex webs of contacts that may be represented by a graph or network. In this graph, vertices identify individuals and edges establish the existence of some type of relations between them. In real communities, the possible edges may be active or not for variable periods of time. These so-called temporal networks typically result from an endogenous social dynamics, usually coupled to the process under study taking place in the community. For instance, disease spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to reconsider maintaining or not their social contacts. Here we investigate the impact of such a dynamical network structure on disease dynamics, where infection occurs along the edges of the network. To this end, we define an endogenous network dynamics coupled with disease spreading. We show that the effective infectiousness of a disease taking place along the edges of this temporal network depends on the population size, the number of infected individuals in the population and the capacity of healthy individuals to sever contacts with the infected, ultimately dictated by availability of information regarding each individual’s health status. Importantly, we also show how dynamical networks strongly decrease the average time required to eradicate a disease.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Human communities are organized in complex webs of contacts that may be represented by a graph or network. In this graph, vertices identify individuals and edges establish the existence of some type of relations between them. In real communities, the possible edges may be active or not for variable periods of time. These so-called temporal networks typically result from an endogenous social dynamics, usually coupled to the process under study taking place in the community. For instance, disease spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to reconsider maintaining or not their social contacts. Here we investigate the impact of such a dynamical network structure on disease dynamics, where infection occurs along the edges of the network. To this end, we define an endogenous network dynamics coupled with disease spreading. We show that the effective infectiousness of a disease taking place along the edges of this temporal network depends on the population size, the number of infected individuals in the population and the capacity of healthy individuals to sever contacts with the infected, ultimately dictated by availability of information regarding each individual’s health status. Importantly, we also show how dynamical networks strongly decrease the average time required to eradicate a disease.
Subject
  • Graph theory
  • Network theory
  • Systems theory
  • Types of organization
  • Social systems
  • Homeomorphisms
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software