About: Despite the advanced PCR-based assays available, a fraction of the pediatric respiratory infections remain unexplained every epidemic season, and there is a perception that novel viruses might be present in these specimens. We systematically collected samples from a prospective cohort of pediatric patients with respiratory infections, that returned negative results by validated molecular RT–PCR assays, and studied them with a target-independent, high-throughput sequencing-based approach. We also included a matched cohort of children with no symptoms of respiratory infection, as a contrast study population. More than fifty percent of the specimens from the group of patients with unexplained respiratory infections were resolved. However, the higher rate of detection was not due to the presence of novel viruses, but to the identification of well-known viral respiratory pathogens. Our results show that already known viral pathogens are responsible for the majority of cases that remain unexplained after the epidemic season. High-throughput sequencing approaches that use pathogen-specific probes are easier to standardize because they ensure reproducible library enrichment and sequencing. In consequence, these techniques might be desirable from a regulatory standpoint for diagnostic laboratories seeking to benefit from the many advantages of these sequencing technologies.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Despite the advanced PCR-based assays available, a fraction of the pediatric respiratory infections remain unexplained every epidemic season, and there is a perception that novel viruses might be present in these specimens. We systematically collected samples from a prospective cohort of pediatric patients with respiratory infections, that returned negative results by validated molecular RT–PCR assays, and studied them with a target-independent, high-throughput sequencing-based approach. We also included a matched cohort of children with no symptoms of respiratory infection, as a contrast study population. More than fifty percent of the specimens from the group of patients with unexplained respiratory infections were resolved. However, the higher rate of detection was not due to the presence of novel viruses, but to the identification of well-known viral respiratory pathogens. Our results show that already known viral pathogens are responsible for the majority of cases that remain unexplained after the epidemic season. High-throughput sequencing approaches that use pathogen-specific probes are easier to standardize because they ensure reproducible library enrichment and sequencing. In consequence, these techniques might be desirable from a regulatory standpoint for diagnostic laboratories seeking to benefit from the many advantages of these sequencing technologies.
Subject
  • Virology
  • Biotechnology
  • Respiratory diseases
  • Infectious diseases
  • Viral respiratory tract infections
  • Genetic mapping
  • Molecular biology
  • Contrast agents
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software